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a b s t r a c t

This paper presents a method for segmenting binary patterns into seven mutually exclusive categories:
core, islet, loop, bridge, perforation, edge, and branch. This is achieved by applying a series of morpholog-
ical transformations such as erosions, geodesic dilations, reconstruction by dilation, anchored skeletoni-
sation, etc. The proposed method depends on a single parameter only and can be used for characterising
binary patterns with emphasis on connections between their parts as measured at varying analysis
scales. This is illustrated on two examples related to land cover maps and circuit board defect detection.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Once a digital image has been segmented and each segment
assigned to a given class of objects, binary maps indicating
whether each given pixel belongs or not to a specific class can
be produced. For example, in remote sensing, the classification
of an image into land cover classes leads to binary maps of any
specific land cover class. Measurements can then be performed
to investigate the shape and size of the spatial patterns occurring
in these maps. A wide variety of techniques are available for pro-
ducing meaningful measurements. For instance, when dealing
with patterns resembling to disks of varying size, granulometries
reveal the size distribution of these patterns. A series of other
morphometric measurements are proposed in (Beisbart et al.,
2001). Rather than performing direct measurements on the input
pattern, we propose a new approach where the input pattern is
segmented into a series of categories revealing information about
its size, shape, and connectivity. In addition, this segmentation re-
lies on a size-parameter since the interaction between a given
phenomenon related to the mapped object depends on the phe-
nomenon itself. For example, the so-called core category can be
viewed as the subset of the pattern that is far enough from its
boundary. This naturally leads to a distance based definition
using a distance threshold whose value depends on the phenom-
enon under study.

This paper is organised as follows. The proposed method is de-
tailed in Section 2. Experimental results are provided and dis-
ll rights reserved.
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cussed in Section 3. Concluding remarks are presented in
Section 4.

2. Method

Several methods are already available for segmenting binary
patterns. For example, the watershed transformation of the com-
plement of the filtered distance transform can be used for seg-
menting overlapping blobs (Vincent and Soille, 1991). However,
this method assumes that the blobs do not deviate too much from
a disk-like shape. Therefore, it cannot be used for segmenting arbi-
trary patterns. We propose hereafter a simple and general purpose
approach relying on a single parameter and leading to the segmen-
tation of arbitrary binary patterns into seven categories: core, islet,
loop, bridge, perforation, edge, and branch. All categories are ob-
tained by applying a series of operators originating from mathe-
matical morphology (Serra, 1982). We use the notations and
definitions detailed in (Soille, 2003).

Let f be a binary image in the square grid with foreground pixels
set to 1 and background pixels set to 0. We use the notion of path
connectivity to establish whether a group of foreground (resp.
background) pixels is connected or not. To avoid the connectivity
paradox of raster grids, we assume that the foreground is 8-con-
nected and therefore the background is 4-connected (or vice versa).

The proposed size dependent characterisation is based on a
size-parameter corresponding to a Euclidean distance threshold
value. We denote this size-parameter by s. Since the analysis is
performed on a raster grid, a size of 1 is equal to the distance sep-
arating the centre of two 4-adjacent pixels (i.e. the width of a pix-
el). The next possible size corresponds to the distance separating
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the centre of two 8-adjacent pixels (i.e.
ffiffiffi
2
p

). In general, the size s is
in the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
where a (resp. b) is the distance along the x-

axis (resp. y-axis) between any two pixels of the grid.
The extraction of all foreground (resp. background) pixels that

are within a distance s to the background (resp. foreground) pixels
will be the basis for the characterisation of the input patterns at
the size s. For conciseness, we develop our methodology for the
characterisation of the foreground only. The characterisation of
the background is obtained by complementing the input image
and considering the dual connectivity rule.

The proposed size dependent characterisation of binary pat-
terns and their connections is illustrated in Fig. 1 together with
the individual processing steps. All steps are described in the fol-
lowing sections (Sections. 2.1–2.5). Note that the proposed seg-
mentation leads to mutually exclusive categories of the
foreground pixels.

2.1. Core

Core pixels are defined as those foreground pixels whose dis-
tance to the background is greater than the given size-parameter
Fig. 1. Morphological segmentation of binary patterns. Top: input binary pattern X, inter
(the name of the final seven categories are typeset in bold). T: threshold operator. EDT: E
using Y as seed. SKELXðYÞ: anchored skeleton of Y using X as anchor set. dXðYÞ: geodesic
s. These pixels correspond to the erosion of the input image by a
Euclidean disk of radius equal to s. They are detected by threshold-
ing the Euclidean distance transform of the foreground for a
threshold value equal to s. An exact and linear-time Euclidean dis-
tance transform algorithm is described in (Hirata, 1996), see pseu-
do-code in (Meijster et al., 2000).

2.2. Islet

Islet pixels are defined as those foreground connected compo-
nents that do not contain any core pixel. They can be obtained
by performing the difference between the input image and the
reconstruction by dilation of this image using the core pixels as
marker set. Fast sequential algorithms for computing reconstruc-
tions by dilation are detailed in (Vincent, 1993).

2.3. Connectors: bridge and loop

Connector pixels are groups of foreground pixels linking core
connected components so that their removal would modify the
homotopy of the input image. Initially, the anchored skeleton of
mediate steps Xi , and resulting segmentation Y. Bottom: successive processing steps
uclidean distance transform. n: set difference. Rd

XðYÞ: reconstruction by dilation of X
dilation of Y with respect to X.
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the input image using the core pixels as anchor set is computed.
Connector pixels are then defined as those pixels whose geodesic
distance from this anchored skeleton is less than s, using the
non-core pixels as geodesic mask. Connector pixels are themselves
subdivided into two categories depending on whether the connec-
tions link the same core connected component or not:

� bridge pixels are connector pixels emanating from two or more
core connected components;

� loop pixels are connector pixels emanating from the same core
connected component.

The notion of anchored skeleton is detailed in (Ranwez and
Soille, 2002) and fast algorithms are described in (Iwanowski and
Soille, 2007).

2.4. Boundaries: edge and perforation

Boundary pixels are defined as those yet unclassified foreground
pixels whose distance to the core pixels is lower than or equal to
the given size-parameter s. They are detected by thresholding the
Euclidean distance of the complement of the core pixels for all val-
ues greater than 0 and less than or equal to s while retaining only
those yet unclassified foreground pixels.

Boundary pixels are themselves subdivided into outer and inner
boundaries. For conciseness, we call the outer boundaries edges
and inner boundaries perforation. Perforation pixels of a given con-
nected component are defined as its boundary pixels that are with-
in a distance s to a hole of this connected component where a hole
is defined as a connected component of the background that does
not contain any pixel of the border of the image. Edge pixels of this
connected component are obtained by subtracting its perforation
pixels from its boundary pixels.

In practice, an efficient iterative algorithm permits the distinc-
tion between perforation and edge pixels without requiring the
processing of each connected component separately. The input of
the algorithm is initialised with the union of core and boundary
pixels. The output edge image is initialised with a void image.
Fig. 2. Morphological segmentation of binary patterns applied to a water mask deriv
corresponding application specific names in parenthesis.
Then, the following three steps are applied until the input is
empty:

(1) fill the holes of the input;
(2) add to the edge image the intersection between the bound-
aries and gradient by erosion of the filled input using a disk of
radius s as structuring element;
(3) update the input with the foreground pixels of the current
input that are embedded within its holes (i.e. intersection
between the input and the filled holes of the input).

The last step of the iterative procedure is required for handling
cases where a connected component of foreground pixels is itself
embedded in a hole of another connected component. Once the
iterative procedure terminates, the perforation pixels are obtained
by subtracting the edge pixels from the boundary pixels defined at
the start of this section.

2.5. Branch

Pixels that do not belong to any of the previously defined cate-
gories are called branch pixels. They emanate either from bound-
aries (edge or perforation) or connectors (bridge or loop).

Note that, connector (bridge and loop) and branch pixels that
are adjacent to core pixels could be called junction pixels and
flagged as such if required by the application.

3. Experimental results

Fig. 2 illustrates the segmentation of binary patterns on a water
mask retrieved from a land cover map. In this experiment, the cat-
egory core matches lakes, the category perforation islands, the cat-
egory islet ponds, etc. This example emphasises that the
nomenclature of the proposed seven categories correspond to ac-
tual features whose meaning is application dependent. Starting
from the water mask of Fig. 2, Fig. 3 shows the proportions of each
category when increasing the size-parameter. In general, the size-
parameter drives the proportion of the core and non-core catego-
ed from a land cover map. The legend lists the generic category names with the



Fig. 3. Proportions of each category of the water mask of Fig. 2 for increasing size-
parameter.

Fig. 4. Spatial pattern analysis applied to a electrical circuit board. Left: original
board. Right: the same board with simulated defects (circled).
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ries. Initially (s ¼ 0), the entire foreground belongs to the core cat-
egory. Similarly, when the value of s exceeds the maximum value
of the distance transform of the image, the entire foreground be-
longs to the islet category. Therefore, the simultaneous existence
of core and non-core categories occurs when the value of the
size-parameter varies between these two boundary values. When
increasing the value of the size-parameter, the core proportion al-
ways decreases while that of the islet can only increase or remain
stable. By contrast, the evolution of the proportion of the remain-
ing categories is not necessarily monotone. For these categories,
fluctuations of the proportions depends on the number and distri-
bution of the remaining core connected components. For instance,
if there is only one core component, the bridge category cannot ex-
ist since the existence of the bridge category requires at least two
core connected components that can be linked by a path of fore-
ground pixels.

Fig. 4 illustrates how the segmentation algorithm could be used
for quality control in manufacturing, for example a circuit board.
The left panel shows the pattern of the undamaged board while
the right panel illustrates the changes in segmentation categories
due to simulated manufacturing errors (circle). In the upper circled
area we simulated a misaligned via (hole) and a single-pixel via,
both resulting in a clearly visible change of the segmentation class.
The bottom circled area contains four ring structures acting as loop
pathways. The simulated manufacturing error here was to open
the left ring and to fill the third ring. The first error removes the
loop-specific character of a ring and consequently, the class loop
changes to the class branch. In the second case, when the hole is
filled, the enclosed area is now large enough to contain core area
and the loop has changed into a bridge between 2 core connected
components.

This method was motivated by the need to describe the frag-
mentation of forest spatial patterns extracted from satellite
images, see Vogt et al. (2007) for preliminary results with empha-
sis on the application. Any test image can be processed using the
free software package GUIDOS available at the following URL:
http://forest.jrc.ec.europa.eu/biodiversity/GUIDOS/.

4. Concluding remarks

The proposed method and algorithms allow for a generic seg-
mentation of binary patterns into categories representing specific
geometric features. The method is generic in the sense that it can
be applied to any binary patterns. The extension of the proposed
method to 3-D images would need adaptations to take into account
the distinction between surfacic and curvilinear 3-D objects. This
could be of interest for future research and particularly for 3-D
medical images. Finally, rather than considering binary patterns,
it would be interesting to generalise the methodology to partitions
of the space for more than two classes (background and fore-
ground). This could be achieved using concepts related to general-
ised geodesic transformations (Soille, 1994).
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